
Managing Terraform 
State in Azure



Christos 
Galanopoulos
DevOps Engineer | 
Microso1 MVP

→ Website: christosgalano.github.io
→ LinkedIn: in/christos-galanopoulos
→ GitHub: @christosgalano
→ Medium: @christosgalanop
→ Sessionize: christos-galanopoulos

2

https://christosgalano.github.io/
https://linkedin.com/in/christos-galanopoulos
https://github.com/christosgalano
https://medium.com/@christosgalanop
https://sessionize.com/christos-galanopoulos


Note: Everything discussed about 
Terraform also applies to 

OpenTofu.

3



Terraform: What & Why?

→ Infrastructure as Code (IaC)
→ Declarative resource provisioning
→ Manages infrastructure lifecycle efficiently
→ Automates deployments with reproducible 

configurations

4



Why Terraform Needs State

→ Maps real-world resources to configurations for 
accurate tracking

→ Ensures changes follow the correct order of 
operations

→ Reduces API calls, improving performance at scale
→ Detects drift and maintains a history of changes
Before any operation, Terraform refreshes the state to 
align with real infrastructure.

5



Where Should You Store State?

→ Local storage (not recommended)
→ Risk of accidental deletion
→ Difficult for team collaboration

→ Remote storage
→ Enables team access and versioning
→ Prevents data loss with better security

6



Storing State in Azure

Azure Blob Storage is a reliable backend for 
Terraform state, providing:
→ High availability and scalability
→ Built-in locking to prevent conflicts
→ Secure access control with RBAC and encryption
→ Private endpoints for network isolation
→ Geo-redundant storage for resilience

7



Project-Based State 
Management

8



Approach 1: Storage Account per 
Environment

Each environment has its own dedicated storage 
account.
→ Provides full isolation
→ Allows separate access controls per environment
→ Increases management overhead
→ Higher costs due to multiple accounts

9



10



Approach 2: Storage Account per Project

A single storage account for the project, with separate 
containers for each environment.
→ Easier to manage with fewer accounts
→ More cost-efficient
→ Reduced isolation compared to per-environment 

storage
→ Requires RBAC at the container level for access 

control
11



12



Centralized State 
Management

13



Core Principles

→ Single storage account for all projects
→ Dedicated container per project
→ Custom role-based access with conditions
→ Each state file linked to a dedicated service 

principal

14



Custom Role: Terraform 
State Contributor

15



16



Condi&onal Role Assignment

A condition is an additional check that refines role 
assignments for more granular access control.
It ensures an action is allowed only if the specified 
conditions evaluate to true.
Idea: Use conditions to narrow access from the 
container level down to specific blob paths for even 
finer control.

17



18



19



Scenario: Single Module

Each environment has a dedicated service principal 
(N service principals for N environments).
→ Ensures strong isolation
→ Maintains a clean and scalable architecture
→ Simple to manage with least privilege 

enforcement

20



21



Scenario Allowed? Reason
Read any Terraform state 
(terraform.tfstate)

No Read access is blocked 
unless path matches 
sp_access_config.blob_path

List all blobs (terraform 
state pull)

Yes Only listing (Blob.List) is 
allowed

Modify (write) state in 
allowed path

Yes Within 
sp_access_config.blob_path

Modify (write) state 
outside allowed path

No Write blocked unless 
within 
sp_access_config.blob_path

Delete any Terraform 
state file

No No explicit delete 
permissions granted

22



Scenario: Mul.ple Modules

Each module has its own state file, requiring separate 
service principals for each environment (NxM service 
principals, where N is environments and M is modules).

→ More complex setup
→ Supports large teams and modular infrastructure
→ Isolates state per module and environment for better 

security
→ Requires more granular access control

23



24



25



Scenario Allowed? Reason
Read any Terraform state 
(terraform.tfstate)

Yes Read access is not 
restricted at the 
container level

List all blobs (terraform 
state pull)

Yes Only listing (Blob.List) is 
allowed

Modify (write) state in 
allowed path

Yes Within 
sp_access_config.blob_path

Modify (write) state 
outside allowed path

No Write blocked unless 
within 
sp_access_config.blob_path

Delete any Terraform 
state file

No No explicit delete 
permissions granted

26



RBAC and ABAC in 
Terraform State 
Management

27



Role-Based Access Control (RBAC)

→ Assigns permissions based on predefined roles
→ Custom Terraform State Contributor role for state 

management
→ Enables principle of least privilege
→ Simplifies access management at scale

28



A"ribute-Based Access Control (ABAC)

→ Extends RBAC with dynamic, context-aware access 
control

→ Implemented through conditional role assignments
→ Enhances security for Terraform state management:
→ Restrict access by blob path within containers
→ Limit access based on attributes such as 

resource tags or user properties

29



Combining RBAC and ABAC 
provides robust, scalable access 

control for Terraform state 
management in Azure.

30



Comparing Project-Based vs Centralized 
State Management

Feature Project-Based Centralized
Storage Structure Multiple storage accounts Single storage account with 

containers
Isolation Strong (per environment) Logical separation via containers 

& RBAC
Management Effort High (more accounts to maintain) Lower (centralized with structured 

access)
Access Control Simpler (per account RBAC) More complex (RBAC + conditional 

role assignments)
Scalability Limited (harder to scale) High (supports large environments 

& teams)

31



Rule of Thumb

Choose Centralized If Choose Project-Based If
Managing multiple 
projects and teams

Working with a small, 
stable number of projects

Planning for growth and 
scalability

Preferring isolated 
environments with 
minimal overhead

32



Switching from Project-Based to 
Centralized later requires migra;ng 
state files, adding complexity. Plan 

ahead.

33



Summary

34



Project-Based Approach

→ Two strategies: Storage Account per Environment 
or per Project

→ Strong isolation between environments
→ Simpler access control with per-account RBAC
→ Higher management overhead and costs
→ Suitable for small, stable environments

35



Centralized Approach

→ Single storage account with dedicated containers 
per project

→ Combines RBAC and ABAC for scalable access 
control

→ Supports single and multiple module scenarios
→ Scalable and efficient for managing multiple teams
→ Ideal for managing multiple projects and future 

growth
36



Thank You

37


