
Christos Galanopoulos

DevOps Engineer @
Performance Technologies

Hands-on experience
architecting, automating, and
optimizing mission-critical
deployments across complex
infrastructures. Proficient with
CI/CD pipelines, "as code" tools,
cloud operations, container
orchestration, and scripting.



Going with the dev-flow

Why and how should we embrace and integrate the dev-flow into
cloud operations?



Definition

dev-flow, short for development flow, refers to the process of
software development from ideation to deployment. It involves

various stages that aim to ensure the production of quality software
products.



Typical flow

Improve

Idea-generation

Requirements-gathering Design Develop Test Deploy

Maintain

By following a standardized process, teams can collaborate
effectively, improve efficiency, and ensure the delivery of high-

quality products and services.



Our main focus

Design

infrastructure

governance

Develop

infrastructure as code

configuration as code

policy as code



Test

validate code modules

introduce what-if checks

include tests (unit, integration etc.)

Deploy

adopt a standard process

review changes

include branch protection rules



Three pillars

"as code" mindset

automation

process standardization



Why adopt an "as code" mindset?

faster provisioning

consistency

scalability

reusability

version control

improved security



Version control

Version control makes it possible to track changes, collaborate on
code, and revert to previous versions if necessary. It improves quality

assurance, collaboration, transparency, and organization while
lowering the risk of data loss.



Automation

Automation can be implemented in almost all phases of a project.
From the development and testing of code to the actual deployment.

Pipelines can be created on a variety of platforms to automate
repetitive tasks so that they execute quickly, consistently, and

reliably.



Process standardization

It is critical to have a standardized process when working on a project
in the manner described.

For example, how you organize your code in a repository, which
branching strategy you employ, code discussions, reviews that must

take place prior to merging changes, and so on.

You should not reinvent the wheel with each new project; instead,
you should have a standard practice that you follow and may slightly

deviate from.



Tools

Version control: Git, SVN, ...

Code hosting: GitHub, GitLab, ...

Code tools: Terraform, Bicep, Ansible, ...

CI/CD: GitHub Actions, Jenkins, GitLab, ...

Testing: Terratest, PSRule, Checkov, ...



Our goal today

Deploy a simple API written in Python to an Azure WebApp using
GitHub Actions, Bicep, and PSRule.



Branch deploy



Benefits

Improved efficiency

Simpler debugging and testing

Early feedback

Faster cycle time

Consistent results

Reduced costs

CI/CD capabilities

Efficient collaboration

Improved risk management



Things to keep in mind

"as code" mindset

version control

everything can and should be tested

minimized human factor in error prone tasks

automation, automation, automation ...

strive for confident deployments

process standardization

meaningful collaboration



Personal information

Blog: https://christosgalano.github.io/

Email: christosgalanop@gmail.com

dev.to: https://dev.to/christosgalano

GitHub: https://github.com/christosgalano

LinkedIn:https://www.linkedin.com/in/christos-galanopoulos/

https://christosgalano.github.io/
mailto:christosgalanop@gmail.com
https://dev.to/christosgalano
https://github.com/christosgalano
https://www.linkedin.com/in/christos-galanopoulos/

