
Scaling Terraform
Configurations

To scale the infrastructure, scalable
code one needs.

— Yoda, DevOps Master

Azure Architecture

Phase 1: Monolith

Characteristics

» Single state

» Hard coded configuration

» All definitions in a single file

» Duplication

Quick and dirty approach

Phase 2: Multi-Monolith

Characteristics

» Environment isolation

» Multiple configuration files

» Duplication among environments

» 1:1 relationship between environments and state files

Better, but still not scalable

Phase 3: Modules

A component is a logical grouping of resources that work
together to provide a higher-level service.

Each component has a corresponding module. Modules are
used to encapsulate the configuration of a component and

are reusable across environments.

For each module split the configuration into separate
files:

» main.tf contains the main configuration of the module

» variables.tf contains the input variables of the module

» outputs.tf contains the output variables of the module

Inputs and outputs define the interface of the module.

For each environment split the configuration into
separate files:

» main.tf contains the main configuration of the environment

» variables.tf contains the input variables of the environment

» outputs.tf contains the output variables of the environment

» terraform.tfvars contains the values of the input variables

» terraform.tf contains configuration about terraform version,
providers, and state

Characteristics

» Directory restrucutre

» Multiple configuration files

» DRY principle

» Reusable modules

First step to reusability and
maintainability

Phase 4: Multilayer Modules

A module can be used to encapsulate a single resource, a
group of resources, a higher-level component, or an

infrastructure stack.

Split modules into two categories, base and composite:

» Base modules are reusable modules that encapsulate the
configuration of low-level infrastructure.

» Composite modules are modules that use other modules to create
a higher-level component.

A base module can be used in multiple composite modules,
and a composite module can be used in multiple

environments.

A base module can contain submodules of its own. These are
used by the base module, but can also be referenced on their

own.

Organize base modules to repositories. This allows for better
reuse and sharing of infrastructure code.

Approach 1: Monorepo

Approach 2: Multirepo (one repository per module)

Organize composite modules to repositories.

Characteristics

» Nested modules

» Even DRYier

» Maintenance of multiple repositories

» Reusability

» Versioning

Starting point for scaling Terraform
configurations

Phase 5: Stacks

If the configuration among environments is similar, and the
only difference is the values of the input variables, then use a

single module to manage all environments.

This module can be thought of as an infrastructure stack,
and it can be used to manage multiple environments.

Characteristics

» Single stack for multiple environments

» Updates to the stack affect all environments

Great approach for medium-sized
projects

Phase 6: Services

Each high-level component gets its own state file. This
allows for better isolation and control over the

infrastructure.

Share information between different high-level components
using remote state data sources.

Organize composite modules to repositories. Helpful when
different teams are responsible for different parts of the

infrastructure.

Characteristics

» Independent management for each high-level component

» A lot more complexity and effort

» Order of execution matters

» Separation of responsibility

» Scalability

Complex but efficient approach for
large projects

Phase *: CI/CD

Create pipelines to make infrastructure changes

Choose a deployment model

https://github.blog/2023-02-02-enabling-branch-deployments-through-issueops-with-github-actions/

CI on module development; why not?

Tools:

» lint: terraform fmt, tflint, ...

» scan: checkov, trivy, snyk, ...

» test: terraform, terratest, kitchen-terraform, ...

» documentation: terraform-docs, ...

» release: semver, ...

Phase **: GitOps

Continuous reconciliation of infrastructure

Tools:

» Flux

» Terraform Cloud

» ArgoCD

Choosing how we organize our Terraform configurations is
crucial to building a strong foundation for our infrastructure.

As our projects expand and evolve, our code must adapt to
support them. Well-organized Terraform code sustains

infrastructure evolution and enables us to scale our
infrastructure confidently.

Well done is better than well said.
— Benjamin Franklin

